Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Russian Journal of Physical Chemistry A ; 96(14):3311-3330, 2022.
Article in English | Scopus | ID: covidwho-2273869

ABSTRACT

Abstract: The recent emergence of the severe acute respiratory disease caused by a novel coronavirus remains a concern posing many challenges to public health and the global economy. The resolved crystal structure of the main protease of SARS-CoV-2 or SCV2 (Mpro) has led to its identification as an attractive target for designing potent antiviral drugs. Herein, we provide a comparative molecular impact of hydroxychloroquine (HCQ), remdesivir, and β-D-N4-Hydroxycytidine (NHC) binding on SCV2 Mpro using various computational approaches like molecular docking and molecular dynamics (MD) simulation. Data analyses showed that HCQ, remdesivir, and NHC binding to SARS-CoV-2 Mpro decrease the protease loop capacity to fluctuate. These binding influences the drugs' optimum orientation in the conformational space of SCV2 Mpro and produce noticeable steric effects on the interactive residues. An increased hydrogen bond formation was observed in SCV2 Mpro–NHC complex with a decreased receptor residence time during NHC binding. The binding mode of remdesivir to SCV2 Mpro differs from other drugs having van der Waals interaction as the force stabilizing protein–remdesivir complex. Electrostatic interaction dominates in the SCV2 Mpro−HCQ and SCV2 Mpro–NHC. Residue Glu166 was highly involved in the stability of remdesivir and NHC binding at the SCV2 Mpro active site, while Asp187 provides stability for HCQ binding. © 2022, Pleiades Publishing, Ltd.

2.
Comput Struct Biotechnol J ; 19: 3339-3348, 2021.
Article in English | MEDLINE | ID: covidwho-2269594

ABSTRACT

Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.

3.
J Biomol Struct Dyn ; : 1-16, 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-2251395

ABSTRACT

A sudden increase in life-threatening COVID-19 infections around the world inflicts global crisis and emotional trauma. In current study two druggable targets, namely SARS-COV-2 Mpro and CCR-5 were selected due to their significant nature in the viral life cycle and cytokine molecular storm respectively. The systematic drug repurposing strategy has been utilized to recognize inhibitory mechanism through extensive in silico investigation of novel Maraviroc analogues as promising inhibitors against SARS-CoV-2 Mpro and CCR-5. The dual inhibition specificity approach implemented in present study using molecular docking, molecular dynamics (MD), principal component analysis (PCA), free energy landscape (FEL) and MM/PBSA binding energy studies. The proposed Maraviroc analogues obtained from in silico investigation could be easily synthesized and constructive in developing significant drug against COVID-19 pandemic, with essentiality of their in vivo/in vitro evaluation to affirm the conclusions of this study. This will further fortify the concept of single drug targeting dual inhibition mechanism for treatment of COVID-19 infection and complications.

4.
J Cell Biochem ; 124(2): 308-319, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173056

ABSTRACT

The attachment of SARA-CoV-2 happens between ACE2 and the receptor binding domain (RBD) on the spike protein. Mutations in this domain can affect the binding affinity of the spike protein for ACE2. S477N, one of the most common mutations reported in the recent variants, is located in the RBD. Today's computational approaches in biology, especially during the SARS-CoV-2 pandemic, assist researchers in predicting a protein's behavior in contact with other proteins in more detail. In this study, we investigated the interactions of the S477N-hACE2 in silico to find the impact of this mutation on its binding affinity for ACE2 and immunity responses using dynamics simulation, protein-protein docking, and immunoinformatics methods. Our computational analysis revealed an increased binding affinity of N477 for ACE2. Four new hydrogen and hydrophobic bonds in the mutant RBD-ACE2 were formed (with S19 and Q24 of ACE2), which do not exist in the wild type. Also, the protein spike structure in this mutation was associated with an increase in stabilization and a decrease in its fluctuations at the atomic level. N477 mutation can be considered as the cause of increased escape from the immune system through MHC-II.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Mutation , Protein Binding , Molecular Dynamics Simulation
5.
PeerJ ; 10: e14120, 2022.
Article in English | MEDLINE | ID: covidwho-2121560

ABSTRACT

The rapid spread of the coronavirus since its first appearance in 2019 has taken the world by surprise, challenging the global economy, and putting pressure on healthcare systems across the world. The introduction of preventive vaccines only managed to slow the rising death rates worldwide, illuminating the pressing need for developing effective antiviral therapeutics. The traditional route of drug discovery has been known to require years which the world does not currently have. In silico approaches in drug design have shown promising results over the last decade, helping to decrease the required time for drug development. One of the vital non-structural proteins that are essential to viral replication and transcription is the SARS-CoV-2 main protease (Mpro). Herein, using a test set of recently identified COVID-19 inhibitors, a pharmacophore was developed to screen 20 million drug-like compounds obtained from a freely accessible Zinc database. The generated hits were ranked using a structure based virtual screening technique (SBVS), and the top hits were subjected to in-depth molecular docking studies and MM-GBSA calculations over SARS-COV-2 Mpro. Finally, the most promising hit, compound (1), and the potent standard (III) were subjected to 100 ns molecular dynamics (MD) simulations and in silico ADME study. The result of the MD analysis as well as the in silico pharmacokinetic study reveal compound 1 to be a promising SARS-Cov-2 MPro inhibitor suitable for further development.

6.
J Biomol Struct Dyn ; : 1-23, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1956485

ABSTRACT

The use of US FDA-approved drugs is preferred due to the need for lower costs and less time. In in silico medicine, repurposing is a quick and accurate way to screen US FDA-approved medications to find a therapeutic option for COVID-19 infection. Dual inhibitors possess dual inhibitory activity, which may be due to the inhibition of two different enzymes, and are considered better than combination therapy from the developmental and clinical perspectives. In this study, a molecular docking simulation was performed to identify the interactions of antiviral drugs with the critical residues in the binding site of the main SARS-CoV-2 protease, spike glycoprotein, and papain-like protease receptors compared to the angiotensin-converting enzyme-related carboxypeptidase (ACE2) receptor of host cells. Each of the receptors was docked with 70 US FDA-approved antiviral drugs using AutoDock Vina. A molecular dynamics (MD) simulation study was also used for 100 ns to confirm the stability behaviour of the ligand receptor complexes. Among the drugs that had the strongest interaction with the SARS-CoV-2 main protease, spike glycoprotein and papain-like protease receptors, and host cell ACE2 receptors, Simeprevir, Maraviroc and Saquinavir had dual inhibitory effects. The MD simulation study confirmed the stability of the strongest interactions between the antiviral drugs and the main protease, ACE2, spike glycoprotein, and papain-like protease receptors to 100 ns. However the results of MMPBSA analysis showed that the bond between Saquinavir and the ACE2 receptor was weak. Simeprevir and Maraviroc drugs had acceptable binding energies with dual receptors, especially the Simeprevir.Communicated by Ramaswamy H. Sarma.

7.
Journal of Saudi Chemical Society ; 26(3):16, 2022.
Article in English | Web of Science | ID: covidwho-1851658

ABSTRACT

The phytochemicals can play complementary medicine compared to synthetic drugs considering their natural origin, safety, and low cost. Phytochemicals hold a key position for the expansion of drug development against corona viruses and need better consideration to the agents that have already been shown to display effective activity against various strains of corona viruses. In this study, we performed molecular docking studies on potential forty seven phytochemicals which are SARS-CoV-1 M-pro inhibitors to identify potential candidate against the main proteins of SARS-CoV-2. In Silico Molecular docking studies revealed that phytochemicals 16 (Broussoflavan A), 22 (Dieckol), 31 (Hygromycin B), 45 (Sinigrin) and 46 (Theaflavin-3,3'-digallate) exhibited excellent SARS-CoV-2 Mpro inhibitors. Furthermore, supported by Molecular dynamics (MD) simulation analysis such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of gyration (Rg) and H-bond interaction analysis. We expect that our findings will provide designing principles for new corona virus strains and establish important frameworks for the future development of antiviral drugs.& nbsp;(C) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.& nbsp;

8.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625933

ABSTRACT

The COVID-19 epidemic is raging around the world. Neutralizing antibodies are powerful tools for the prevention and treatment of SARS-CoV-2 infection. Antibody CR3022, a SARS-CoV neutralizing antibody, was found to cross-react with SARS-CoV-2, but its affinity was lower than that of its binding with SARS-CoV, which greatly limited the further development of CR3022 against SARS-CoV-2. Therefore, it is necessary to improve its affinity to SARS-CoV-2 in vitro. In this study, the structure-based molecular simulations were utilized to virtually mutate the possible key residues in the complementarity-determining regions (CDRs) of the CR3022 antibody. According to the criteria of mutation energy, the mutation sites that have the potential to impact the antibody affinity were then selected. Then optimized CR3022 mutants with the enhanced affinity were further identified and verified by enzyme-linked immunosorbent assay (ELISA), surface plasma resonance (SPR) and autoimmune reactivity experiments. Finally, molecular dynamics (MD) simulation and binding free energy calculation (MM/PBSA) were performed on the wild-type CR3022 and its two double-site mutants to understand in more detail the contribution of these sites to the higher affinity. It was found that the binding affinity of the CR3022 antibody could be significantly enhanced more than ten times after the introduction of the S103F/Y mutation in HCDR-3 and the S33R mutation in LCDR-1. The additional hydrogen-bonding, hydrophobic interactions, as well as salt-bridges formed between the modified double-site mutated antibody and SARS-CoV-2 RBD were identified. The computational and experimental results clearly demonstrated that the affinity of the modified antibody has been greatly enhanced. This study indicates that CR3022 as a neutralizing antibody recognizing the conserved region of RBD against SARS-CoV with cross-reactivity with SARS-CoV-2, a different member in a large family of coronaviruses, could be improved by the computational and experimental approaches which provided insights for developing antibody drugs against SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibody Affinity , Molecular Dynamics Simulation , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cross Reactions , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology
9.
Molecules ; 26(23)2021 Dec 05.
Article in English | MEDLINE | ID: covidwho-1555019

ABSTRACT

SARS-CoV-2 is highly homologous to SARS-CoV. To date, the main protease (Mpro) of SARS-CoV-2 is regarded as an important drug target for the treatment of Coronavirus Disease 2019 (COVID-19). Some experiments confirmed that several HIV protease inhibitors present the inhibitory effects on the replication of SARS-CoV-2 by inhibiting Mpro. However, the mechanism of action has still not been studied very clearly. In this work, the interaction mechanism of four HIV protease inhibitors Darunavir (DRV), Lopinavir (LPV), Nelfinavir (NFV), and Ritonavire (RTV) targeting SARS-CoV-2 Mpro was explored by applying docking, molecular dynamics (MD) simulations, and MM-GBSA methods using the broad-spectrum antiviral drug Ribavirin (RBV) as the negative and nonspecific control. Our results revealed that LPV, RTV, and NFV have higher binding affinities with Mpro, and they all interact with catalytic residues His41 and the other two key amino acids Met49 and Met165. Pharmacophore model analysis further revealed that the aromatic ring, hydrogen bond donor, and hydrophobic group are the essential infrastructure of Mpro inhibitors. Overall, this study applied computational simulation methods to study the interaction mechanism of HIV-1 protease inhibitors with SARS-CoV-2 Mpro, and the findings provide useful insights for the development of novel anti-SARS-CoV-2 agents for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/chemistry , Drug Design , HIV Protease Inhibitors/chemistry , Humans , Protein Binding
10.
J Med Virol ; 93(4): 2476-2486, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217395

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has already resulted in a huge setback to mankind in terms of millions of deaths, while the unavailability of an appropriate therapeutic strategy has made the scenario much more severe. Toll-like receptors (TLRs) are crucial mediators and regulators of host immunity and the role of human cell surface TLRs in SARS-CoV-2 induced inflammatory pathogenesis has been demonstrated recently. However, the functional significance of the human intracellular TLRs including TLR3, 7, 8, and 9 is yet unclear. Hitherto, the involvement of these intracellular TLRs in inducing pro-inflammatory responses in COVID-19 has been reported but the identity of the interacting viral RNA molecule(s) and the corresponding TLRs have not been explored. This study hopes to rationalize the comparative binding of the major SARS-CoV-2 mRNAs to the intracellular TLRs, considering the solvent-based force-fields operational in the cytosolic aqueous microenvironment that predominantly drives these interactions. Our in silico study on the binding of all mRNAs with the intracellular TLRs depicts that the mRNA of NSP10, S2, and E proteins of SARS-CoV-2 are possible virus-associated molecular patterns that bind to TLR3, TLR9, and TLR7, respectively, and trigger downstream cascade reactions. Intriguingly, binding of the viral mRNAs resulted in variable degrees of conformational changes in the ligand-binding domain of the TLRs ratifying the activation of the downstream inflammatory signaling cascade. Taken together, the current study is the maiden report to describe the role of TLR3, 7, and 9 in COVID-19 immunobiology and these could serve as useful targets for the conception of a therapeutic strategy against the pandemic.


Subject(s)
COVID-19/virology , RNA, Messenger/genetics , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Toll-Like Receptors/metabolism , Binding Sites , COVID-19/immunology , COVID-19/metabolism , Computer Simulation , Genome, Viral , Humans , Molecular Docking Simulation , Protein Binding , RNA, Messenger/analysis , RNA, Messenger/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , Toll-Like Receptors/chemistry , Toll-Like Receptors/genetics
11.
J Biomol Struct Dyn ; 40(17): 7744-7761, 2022 10.
Article in English | MEDLINE | ID: covidwho-1145108

ABSTRACT

The viral particle, SARS-CoV-2 is responsible for causing the epidemic of Coronavirus disease 2019 (COVID-19). To combat this situation, numerous strategies are being thought for either creating its antidote, vaccine, or agents that can prevent its infection. For enabling research on these strategies, several target proteins are identified where, Spike (S) protein is of great potential. S-protein interacts with human angiotensin-converting-enzyme-2 (ACE2) for entering the cell. S-protein is a large protein and a portion of it designated as a receptor-binding domain (RBD) is the key region that interacts with ACE2, following to which the viral membrane fuses with the alveolar membrane to enter the human cell. The hypothesis is to identify molecules from the pool of anticancer phytochemicals as a lead possessing the ability to interact and mask the amino acids of RBD, making them unavailable to form associations with ACE2. Such a molecule is termed as 'fusion inhibitor'. We hypothesized to identify fusion inhibitors from the NPACT library of anticancer phytochemicals. For this, all the molecules from the NPACT were screened using molecular docking, the five top hits (Theaflavin, Ginkgetin, Ursolic acid, Silymarin and Spirosolane) were analyzed for essential Pharmacophore features and their ADMET profiles were studied following to which the best two hits were further analyzed for their interaction with RBD using Molecular Dynamics (MD) simulation. Binding free energy calculations were performed using MM/GBSA, proving these phytochemicals containing anticancer properties to serve as fusion inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Silymarin , Amino Acids/metabolism , Angiotensin-Converting Enzyme 2 , Angiotensins/metabolism , Antidotes , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptidyl-Dipeptidase A/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
12.
J Mol Graph Model ; 105: 107874, 2021 06.
Article in English | MEDLINE | ID: covidwho-1091762

ABSTRACT

SARS-CoV-2, the viral particle, is responsible for triggering the 2019 Coronavirus disease outbreak (COVID-19). To tackle this situation, a number of strategies are being devised to either create an antidote, a vaccine, or agents capable of preventing its infection. To enable research on these strategies, numerous target proteins are identified where Spike (S) protein is presumed to be of immense potential. S-protein interacts with human angiotensin-converting-enzyme-2 (ACE2) for cell entry. The key region of S-protein that interacts with ACE2 is a portion of it designated as a receptor-binding domain (RBD), following whereby the viral membrane fuses with the alveolar membrane to enter the human cell. The proposition is to recognize molecules from the bundle of phytochemicals of medicinal plants known to possess antiviral potentials as a lead that could interact and mask RBD, rendering them unavailable to form ACE2 interactions. Such a molecule is called the 'S-protein blocker'. A total of 110 phytochemicals from Withania somnifera, Asparagus racemosus, Zinziber officinalis, Allium sativum, Curcuma longa and Adhatoda vasica were used in the study, of which Racemoside A, Ashwagandhanolide, Withanoside VI, Withanoside IV and Racemoside C were identified as top five hits using molecular docking. Further, essential Pharmacophore features and their ADMET profiles of these compounds were studied following to which the best three hits were analyzed for their interaction with RBD using Molecular Dynamics (MD) simulation. Binding free energy calculations were performed using MM/GBSA, proving these phytochemicals can serve as S-protein blocker.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Phytochemicals/pharmacology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
13.
Comb Chem High Throughput Screen ; 24(7): 1069-1082, 2021.
Article in English | MEDLINE | ID: covidwho-892411

ABSTRACT

Aims & Objective: Coronavirus Disease 2019 (COVID-19) caused by the human coronavirus 2019 (HCoV-19, also known as SARS-CoV-2) infection is currently in a global outbreak. COVID-19 has posed a huge threat to public health and economic stability worldwide. CR3022, a human monoclonal neutralizing antibody isolated from a Severe Acute Respiratory Syndrome (SARS) recovery patient, was confirmed to be able to bind the S protein of HCoV-19 with a certain degree of neutralizing activity. Crystal structural information indicated that CR3022 could bind to the epitope on the receptor binding domain (RBD) of HCoV-19, whose epitope consists of 28 amino acids, and 24 of them are conserved in SARS-CoV of SARS. However, the crystal structure is only a static conformation at a certain moment in time, and it cannot provide dynamic details of the interaction between antigen and antibody. METHODS: In this study, molecular dynamics (MD) simulation combined with MM/PBSA and CAS methods were performed to investigate the mechanism of binding of CR3022 against SARS-CoVRBD and HCoV-19-RBD in order to determine their holographic dynamic information. RESULTS: It was found that the CR3022-SARS-CoV-RBD complex was more stable during 100ns MD run than that of the CR3022-HCoV-19-RBD system. There were common conservative amino acids on the ß2 sheet of RBD, including Tyr369, Phe377, Lys378, Tyr380, Gly381, Lys386, Leu390 and others. These conservative amino acids play significant roles in the binding process of CR3022 antibody against SARS-CoV-RBD and HCoV-19-RBD. It was also found that the binding mode of CR3022 to its native target SARS-CoV-RBD is more comprehensive and uniform. Moreover, the ß2 sheet residue Thr385 and non-ß2 sheet residues Arg408 and Asp428 of the CR3022-SARS-CoV-RBD system were found to be crucial for their binding affinities, thus forming a special conformational epitope. However, these key amino acids are not present in the CR3022-HCoV-19-RBD system. The binding mode of CR3022 and HCoV-19-RBD is similar to that of SARS-CoV-RBD, but the deficiency of crucial hydrogen-bonds and salt-bridges. Therefore, the binding of CR3022 and HCoV-19-RBD only draws on the partial mode of the binding of CR3022 and SARS-CoV-RBD, so there is a loss of affinity. CONCLUSION: Thus, in order to better fight the epidemic of COVID-19 with the CR3022 antibody, this antibody needs to further improve the neutralization efficiency of HCoV-19 through mutation of it's CDR region.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/virology , Computational Biology , SARS-CoV-2/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Binding Sites, Antibody , Epitopes/metabolism , Humans , Molecular Dynamics Simulation
14.
J Biomol Struct Dyn ; 40(2): 696-711, 2022 02.
Article in English | MEDLINE | ID: covidwho-748267

ABSTRACT

A new strain of coronavirus (CoV) has been identified as SARS-CoV-2, which is responsible for the recent COVID-19 pandemic. Currently, there is no approved vaccine or drug available to combat the pandemic. COVID-19 main protease (Mpro) is a key CoV enzyme, which plays an important role in triggering viral replication and transcription, turns it into an attractive target. Therefore, we aim to screen natural products library to find out potential COVID-19 Mpro inhibitors. Plant-based natural compounds from Sigma-Aldrich plant profiler chemical library have been screened through virtual molecular docking and molecular dynamics simulation to identify potential inhibitors of COVID Mpro. Our virtual molecular docking results have shown that there are twenty-eight natural compounds with a greater binding affinity toward the COVID-19 Mpro inhibition site as compared to the co-crystal native ligand Inhibitor N3 (-7.9 kcal/mol). Also, molecular dynamics simulation results have confirmed that Peonidin 3-O-glucoside, Kaempferol 3-O-ß-rutinoside, 4-(3,4-Dihydroxyphenyl)-7-methoxy-5-[(6-O-ß-D-xylopyranosyl-ß-D-glucopyranosyl)oxy]-2H-1-benzopyran-2-one, Quercetin-3-D-xyloside, and Quercetin 3-O-α-L-arabinopyranoside (selected based on the docking score) possess a significant amount of dynamic properties such as stability, flexibility and binding energy. Our In silco results suggests that all the above mention natural compounds have the potential to be developed as a COVID-19 Mpro inhibitor. But before that, it must go through under the proper preclinical and clinical trials for further scientific validation.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Protease Inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL